If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8^2+10^2=c^2
We move all terms to the left:
8^2+10^2-(c^2)=0
We add all the numbers together, and all the variables
-1c^2+164=0
a = -1; b = 0; c = +164;
Δ = b2-4ac
Δ = 02-4·(-1)·164
Δ = 656
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{656}=\sqrt{16*41}=\sqrt{16}*\sqrt{41}=4\sqrt{41}$$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{41}}{2*-1}=\frac{0-4\sqrt{41}}{-2} =-\frac{4\sqrt{41}}{-2} =-\frac{2\sqrt{41}}{-1} $$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{41}}{2*-1}=\frac{0+4\sqrt{41}}{-2} =\frac{4\sqrt{41}}{-2} =\frac{2\sqrt{41}}{-1} $
| 4c-c-1=11 | | y=3(32)+7 | | 4=b-37/8 | | -20.8=u/7-3.3 | | (2)3x-1=5x+4 | | -22=y/15 | | -24=t/2-9 | | x3+x2+6x+30=0 | | k/18=9 | | -2(p+-2)=6 | | 180=2x-(255) | | 12-3x4=36 | | d/4+0.6=-2.4 | | -9k-6=-k+8-10k | | 4y2=24 | | x9+6=9 | | 11=k/5+7 | | -55=-17+2y | | 26=w-2 | | -2(x+16)=40 | | 0.5/1.25=x/3.75 | | 3v+v+-3=17 | | 7n+6=-5(n-6) | | 8(t-76)=96 | | a5=-11 | | 4(s+9)=88 | | 6(q+2)=42 | | 30-x=366 | | s/6=24 | | 58-x=241 | | q-26/6=9 | | 1/3x =5 |